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ABSTRACT

This report describes the continuing developMncrL of scanning, pre-

processing, character-classification, and context-analysis techniques

for hand-printed text, such as computer coding sheets in the FORTRAN

language.

The performance of topological feature extraction, combined with

character classification by a learning machine, is described, and com-

pared with the performance of other combinations. By performing intra-

author testing (gathering the training data and test data from the same

author), we have achieved a dramatic reduction in test error rate, to

less than 10 percent on a limited sample.

We describe an experiment in which a fragment of FORTRAN text is

scanned, preprocessed, classified character by character, and subjected

to context analysis to greatly reduce the recognition-error rate.

Finally, we discuss advances in the method of analyzing arithmetic ex-

pressions, a key aspect of the context analysis.
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I INTRODUCTION

processing, character-classification, and context-analysis techniques

for hand-printed text. The particular subject matter of our investi-

gation is hand-printed FORTRAN text on standard computer coding sheets,

with a 46-character alphabet. The reader is referred to the previous

reports of this project for background and supplementary material.

In Sec. II, we describe experiments in which character images are

preprocessed by the topological feature extraction program TOPO 2 and

classified by various methods. Comparisons are made of the performance

of different classifiers and different preprocessors,

The effect of intra-author testing, in which the training and

testing data are taken from the same individual author, is reported in

Sec. III. On a limited sample of test alphabets, intra-author testing

produced a dramatic decrease in recognition error rate, from approxi-

mately 20 percent to less than 10 percent.

In Sec. IV. we follow a fragment of FORTRAN text from the coding

sheet through scanning, preprocessing, classification, and context

analysis. In this example, statement-by-statement syntax analysis re-

duced the per-character error rate by a factor of ten. This descrip-

tion provides a good example of the methods we are developing to improve

text recognition through context analysis.

We conclude with a discussion of the problem of analyzing algebraic

expressions, which is presently the most important problem area of the

syntax analysis. A search through all possible alternative character

strings to find a legal expression is prohibitive in terms of both

memory and time required. We describe several methods that contribute

to reducing the search to manageable proportions.
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II LEARNING-MACHINE AND NEAREST-NEIGHBOR

EXPERIMENTS ON THE TOPOLOGICAL FEATURES FROM TOPO 2

A. Introduction

In the Fifth Quarterly Report we described TOPO 2, a program for

the SDS 910 computer that extracted topological and geometrical features

from hand-printed character images and classified the characters on the

basis of these features. We mentioned that we planned experiments in

which the features generated by TOPO 2 would be used as the basis for

classification of the characters by a learning machine. This section

describes some of these experiments. Additional experiments, in which

the training and testing pattern sets were derived from the same author,

are reported in +he next section.

The TOPO 2 program was modified so that, as it processed each

character image, it produced an output feature vector containing 64

topological feature coordinates. Sixteen of these features were re-

lated to the concavities of the figure, sixteen were related to the

spurs, and ten described the enclosures, height, and width. The re-

maining 22 features resulted from the special calculations performed

in TOPO 2 to discriminate among groups of similar categories, such as

5 and S. The file of 'eature vectors was used for training and testing

the CALM learning-machine simulation, in the same manner that other

files of feature vectors from different processing systems have been

used in the past.

The experimental results lead to two types of comparison. On one

hand, the performance of CALM on the features from TOPO 2 may be com-

pared with the performance of the classification routines that were

hand-coded into TOPO 2 itself, since both classifiers were working with

the same feature vectors. On the other hand, the success of the topo-

logical feature extraction may be evaluated through comparison with the

performance of CALM working on feature vectors from other preprocessors.
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B. TOPO-CALM Experiment 3

The training set for TOPO-CALM Experiment 3 contained 56 FORTRAN

alphabets, or 2576 characters. Forty-nine of the training alphabets

were obtained by taking the first alphabet of each of the authors in

our standard data base. The author of the test characters was repre-

sented by one of these 49 training alphabets, and by seven additional

alphabets scattered among the 56 in the training set. Thus, the

training set may be considered to have an intra-author erichment of

8/56, or 14 percent. The test rest:lts were probably somewhat better

than would be obtained in a completely independent-author (inter-author)

test. The effect of intra-author testing is dealt with more fully in

the next section.

The test set consisted of two alphabets (92 characters). A 46-

category linear learning machine was used, with the training margin

set to 200 (approximating the average squared length of a pattern

vector). After the second iteration, the training margin was reduced

to 50, in the hope ot allowing the training activity to settle down.

Whethpr or not this occurred to a significant degree is not clear from

the results.

The learning curves are shown in Fig. 1. The training error rte

reached 19 percent ia five iterations; the test error rate reached 19

percent, although it rose to 22 percent in the last iteration. It may

be noted that the training and test error rates reached approximately

the same values. This closing of the usual test-training error-rate

gap reflects both the large size of the training :et (the second

largest used in any t"pertiment to date) and the enrichment of tht

training set by patter;.s from the test author.

C. TOPO Nearest Neighbor Experiment I

The training and testing sets of pattern-feature vectors that were

used in !OPO-CALM Experiment 3 were also used for classification by a

type of clas.ifier, new to this project, usually called a nearest

neighbor (NN) classifier. The NN classifier shares sith the learning

machines the property that the classification of test patterns is

3
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based on information derived from a set of training patterns. In a

learning machine the information is represented by an array of adaptive

weights developed during iterative presentation of the training patterns.

In the NN classifier, however, the training patterns themselves are

stored as reference vectors against which a test pattern is compared.

In a simple NN machine, all the training (or reference) patterns

are stored. The test pattern is compared against each training pattern,

and is assigned the category associated with the training pattern closest

to it. The measure of closeness, in the classifier we used, is the sum

of the absolute differences between the training pattern and the test

pattern In each coordinate.

Certain variations of the NN classifier have been studied by various

researchers, including Dr. Peter Hart of our laborrtory and Dr. Tom Cover

of Stanford University, and theoretical results have been obtained. In

the n-nearest neighbor machine, classification is based on the n training

patterns nearest the test pattern. We shall present results for a 3-NN

machine as well as for a simple NN machine. In the condensed nearest

neighbor machine, an attempt is mcle to -onserve storage spat by elimi-

nating training patterns that are near other training patterns in the

same category. The condensed NN machine was not used in our experiment.

In TOPG-NN Experiment 1, we used exazctly the same 2576 training

patterns (feature vectors) and 92 test patteins as in TOPO-CALM Experiment

3. We simultaneously implemented a simple NN classifier and a 3-NN

classifier. For both classifiers, the error rate was 19/92, or 2] per-

cent; in fact, the errors made by the two classifiers were largely the

sar. %.

D. Comparison of Results

We are now in a position to compare the performance of four dif-

ferent classifiers in attempting to classify the same test set of 92

feature vectors from TOPO 2. The four classifiers were: the NN machine,

the 3-NN machine, the linear learning machine (CALM), and the classifi-

cation routines of TOPO 2 itself. The first three of these classifiers

5



used the same training set of 2576 characters. For TOPO 2, a training

set of sorts was implicit in the 20 alphabets of charactprs examined by

the human experimenter while he developed the classification routines.

The comparison of performance, on a pattern-by-pattern basis, is

presented in Table I. With one exception--the classification of

Alphabet No. 59 by TOPO 2--the error rate was always close to 10 errors

in an alphabet of 46 patterns. The four classification errors that are

circled are due to a programming fault that affected the feature-vector

output of TOPO 2. Had this fault been corrected, it may be assumed that

these classifications would have been correct. The same statement

probably applies to the four errors encircled by the dashed line. In

summary, we may say that the results point to a generally uniform error

rate close to 20 perient.

Let us now compare these results, taken together, with previous

results described in Quarterly Reports 2 through 5. In PREP-CALM

Experiment 3, a test error rate of 20-23 percent was achieved with a

training set of 36 alphabets from 12 authors, using feature vectors

produced by the nine-view simulation of the edge-detecting optical pre-

processor (PREP 24A). In PREP-CALM Experiment 9, with an expanded

training set of 60 alphabets from 20 authors, this error rate was

lowered to 19 percent. In MASK-CALM Experiments 2-4, test error rates

of 23-27 percent were obtained using combined feature vectors from the

CALMMASK preprocessor and Clemens' technique. Throughout the TOPO 2

experiments (Authors 1-49), rates from approximately 20 percent to 30

percent were observed, with the lowest rates generally occurring on

alphabets that were examined during the development of the classifica-

tion routines.

E. Discussion

We may draw certain general conclusions from the information just

presented. First, it is clear that the combination of topological

feature extraction (TOPO 2) and classification by learning machine

(CALM) was successful. The performance achieved by this combination

matched that achieved by the nine-view edge-detecting preprocessor

6



Table I

COMBINED ERROR MAPS FROM FOUR CLASSIFIERS

Alphabet No. 58 - Alphabet No. 59
Category TOPO 2 CALM NN 3-NN- TOPO 2 CALM NN 3-NN-

1 __________________ __________________

7 __ _ _ _ _ _ 9

8 9 9 2 + 3 3

0 _ _ _ _ _ _ B B

A
B 8 0 8 6 6
C 6

D ~0 0 __ _ _ _ _

E
F E
0
H M N__ _ _ _ _

I

N W

Q 0 0 D D P U U U
R _ _ _ _ _ P

S 5 5

w _ _ _ _ _ _ U

x *

Z 2 9 2 2 _ _ _ _ _ _

6

Toa 11 1 1 1 0 15 1 1 1
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(PREP 24A) and CALM. Further evidence supporting these statements will

be presented in the next section.

Second, the nearly identical performance of the four classifiers on

the feature vectors from TOPO 2 is evidence to support the view, which

we hold, that the exact form of the classifier is probably not crucial

to the performance of the system. The following argument may be made.

A given set of training (and testing) pattern vectors is equivalent to

a collection of points in an N-dimensional feature space. Any classifier,

which is developed on the basis of the training patterns, attempts to

organize this N-space into regions each containing pattern points from

a single category. In every case, the property of spatial proximity

in the N-space will underlie the process of breaking up the total volume.

This fact is most clearly demonstrated by the nearest-neighbor classifier,

but it is also present in the linear learning machine and the ToPO 2

classifier, in which each category acquires a single, convex region of

N-space, bounded by, at most, k - 1 hyperplanes, where k is the number

of categories. Only if the pattern categories are multimodal or inter-

twined in N-space will the performance of a simple classifier be bettered

by a classifier capable of more complex decision surfaces, such as a NN

machine or a Piecewise Linear learning machine. Furthermore, in such a

case, the training set must be extensive enough to define the pattern

regions. It is the goal of preprocessing techniques to condense and

simplify the pattern regions in N-space--in the ideal limit, to reduce

each category to a single point. We thus arrive at the viewpoint that

improvements in the preprocessing and changes in the choice of the data

sets are more likely to produce significant changes in performance than

are refinements in the classifier.

Finally, it can be seen that the many experiments reported to date

during the project have involved three separate preprocessors (PREP 24,

CALMHASK+Clemens' technique, and TOPO 2), together with a variety of

experimental conditions, training sets, test sets, etc., and yet in

each case we seem to have arrived at a kind of "20 percent barrier" in

test error rate. The question arises, "Is there something inherent in

8



a set of hand-printed characters collected from different authors

(approximately 50) that limits, or tends to limit, the performance of

a preprocessor-plus-classifier combination?" The use of the phrase

"20 percent barrier" is not intended to mean that we propose the

existence of a specific barrier to progress, or that 20 percent is a

number of particular significance. We must conclude, however, that

the fact that various approaches have all arrived at nearly the same

level of performance seems suggestive. The question is completely open

at present.

A vital aspect, common to all the experiments that we have reported

thus far, has been the use of training data from a large number of

authors. We have avoided specializing the training data (and, there-

fore, the trained classifier) to an individual author, because we pre-

ferred to develop, if possible, a universal classifier. Recently,

however, in an attempt to cross the "20 percent barrier," we tried

experiments in which the printing of the same person was used for

training and testing (intra-author experiments). The dramatic improve-

ment in performance that resulted from intra-author testing is described

in the next section.

9



III INTRA-AUTHOR EXPERIMENTS

A. Introduction

The variations in form among different characters printed by one

author are much less than the variations among characters printed by a

large population of authors. Accordingly, intra-author character

recognition should present a simpler problem than inter-author recogni-

tion, and we could expect a learning-machine system to achieve signifi-

cantly better performance on an intra-author problem.

The price paid for intra-author training and testing is twofold.

First, enough data must be collected for each author to provide an

ample training set. Second, the trained machine is specific to one

author. In an installation where several authors were using a text-

recognition system, each would require his own'set of trained weights.

These requirements might be met quite readily in an operating system.

For example, a user of the system might sign on the first day with a

sample of his printing that would be used to generate a set of trained

weights for him, to be kept in a peripheral memory and recalled as

needed. As the author used Lhe system, further training might be per-

formed on his continuing inputs, to refine and update the set of weights.

The questions of how much training to do, and how to identify the true

categories of the training characters without interfering with the

author's use of the system, are interesting system questions that are

beyond the scope of the present discussion.

The authors chosen for these first intra-author experiments were

the only two authors for whom 20 hand-printed alphabets had been scanned

and quantized, namely, John Munson (JM) and Richard Duda (ROD) of the

Applied Physics Laboratory. In addition, some actual FORTRAN coding

sheets prepared by these authors in the course of program writing were

available. Future intra-author experimentation will require additional

data-gathering to cover more authors; hopefully, this data-gathering

will also enable us to build up a data base from actual coding sheets.

10



B. Intra-Author TOPO-CAd Experiments

1. TOPO-CALM Experiment 2

In TOPO-CALM Experiment 2, eight alphabets by JM (Sequence

Nos. 50-55 and 58-59) were preprocessed by TOPO 2 and used for training,

and two alphabets (Nos. 56 and 57) were used for testing. The learning

curves are presented in Fig. 2. The training error rate reached 20

percent in four iterations, thne test error rate reached 23 percent. It

is noteworthy that in spite of the relatively small training set (368

characters), the difference between training and test error rates was

small, and the test error rate was close to the best performance ob-

tained in previous inter-author experiments. These facts were strong

evidence for reduced variability among patterns from a single author,

and we hurried to perform more extensive experiments.

2. TOPO-CALM Experiment 4

Ten additional alphabets by JM (Sequence Nos. 60-69) were

preprocessed by TOPO 2 and added to the existing ten. In TOPO-CALM

Fxperiment 4, alphabets 50 and 51 were used for testing, and the other

18 alphabets comprised the training set. Thus, the size of the training

set was more than twice that of Experiment 2.

The learning curves for Experiment 4 are shown in Fig. 3. The

training and test error rates fluctuated, but in general reached values

on the order of 10 percent. This test error rate is approximately half

as large as the best obtained previously, in spite of the modest size

of the training set. The rpsult dramatic-lly shows the difference be-

tween inter-author and intra-author testing.

3. TOPO-CALM Experiment 6

To provide a further check on the resuilts of Experiment 4, we

performed an experiment under identical conditions with characters

printed by a different author (ROD). Alphabets No. 20 and No. 21 were

used for testing, and the remaining eighteen for training. The results

are shown in Fig. 4. The results are slightly better than those of

Experiment 4. The training and test error rates are below 10 percent.

This result confirms that of Experiment 4.

11
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LEARNING CURVES
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LEARNING CURVES
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4. PREP-CALM Experiment 10

If intra-author testing produces such a marked improvement in

performance on patterns preprocessed through TOPO 2 and classified by

CALM, should it not do the same for patterns preprocessed by PREP 24?

To investigate this question, the file of twenty alphabets by TM was

sent through the nine- 'iew, edge-detecting preprocessor simulation,

PREP 24A. The resulting feature vectors were classified by CALM, using

the same training and test sets as in TOPO-CALM Experiment 4.

By accident, only the centered view of each pattern was used

for training and testing. Even so, the training error rate went to zero

in six iterations, and the test error rate reached 8 percent. This re-

sult compares with test error rates of 25-35 percent for an inter-author

experiment with a much larger training set (Experiment 1, in the Second

Quarterly Report). This is stror- independent evidence in favor of

intra-author testing.

5. A Combined TOPO-PREP Experiment

We have previously discussed the possibility of combining the

output of two or mc. re classifiers to achieve improved recognition

accuracy (Second Quarterly ReporL, pp. 8-9). With an eye to this possi-

bility, we used the same training and testing pattern sets in PREP-CALM

Experiment 10 that we had usvd in TOPO-CALM Experiment ,1. By combining

the responses from the classifiers in the two experiments, it was possible

to create a new preprocessor-plus-classifier system equivalent to the two

individual ones linked together.

We combined the outputs of the classifiers by causing the

CALM program to print out, in each cage, the maximum and svcond maximum

Dot Product Unit (DPU) sums together with the DPU sum in the desired

category. From this Information it was possible to determine, when one

classifier was in urror, whether the other one had a correct vote strong

enough to reverse the decision.

The result, for the combined classifier. £as three errors in

92 patterns, or a 3 percent test error rate. The test error rates for

15



the two individual classifiers were 7/92 and 5/92, respectively. Al-

though the test sample is small and is dependent on a specific pair of

alphabets, the evidence is quite clear that the combined system repre-

sents an improvement over the individual nes.

6. Discussion

In this section, we have seen that intra-author testing can

lead to a dramatic improvement in test error rate, cutting it from

previous lows on the order of 20 percent to less than 10 percent. In

addition, the combining of two preprocessor-classifier pairs has cut the

error rate by another sizable percentage.

The results of these experiments should be considered some-

what tentative, for two reasons. First, the test samples were statis-

tically small (92 patterns), and limited to two authors. Secoid, the

data were taken from coding sheets in which twenty alphabets were written

on successive lines at one sitting. We certainly expect to find more

variability among patterns collected from actual coding sheets produced

by an author at different times.

At the time of this writing, we are engaged in revising the

coding-sheet scanning program to facilitate the gathering of a large

amount of data from coding sheets. We are also upgrading the TOPO

program, to make it run faster and to improve and expand its set of

output features. We anticipate using a body of coding-sheet data from

each of several authors to further the investigation of intra-author

testing. By using a larger training set, and one taken from coding

sheets rather than sheets containing alphabets, we should be able to

counteract the negative effect of increased variability in the test

patterns produced by an author. The use of actual coding sheets will

assure us of a closer match to a realistic operating situation.
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IV AN EXPERIMENT 2NCLUDING PREPROCESSING,

CLASSIFICATION, AND SYNTAX ANALYSIS

An experiment has been performed in which a sample of text from a

coding sheet was scanned, preprocessed, classified, and subjected to

syntax analysis. The original text fragment on the coding sheet is

shown in Fig. 5. The text without guidelines, as the SCAN 2 program

sees it, is shown in Fig. 6. The text consisted of 107 non-blank

characters. The black-white quantized images of the characters were

typed by the computer and assembled in the format of the text to form

Fig. 7. Figure 8 shows a few of the quantized images, on an expanded

scale. The quantized images are elongated, owing to the different

horizontal and vertical spacings of the output typewriter.

The 107 characters were preprocessed by TOPO 2, and the resulting

feature vectors were classified by CALM in a test-only run. CALM used

the weights that were developed, during TOPO-CALM Experiment 4, by

training on 18 alphabets of characters from the same author. The out-

puts of CALM were the values of the DPU sums for each category, for

every character. After scaling the DPU sums to represent approximate

confidence values and cutting off low values, the classification out-

put had the following form:

D 3 W V D ] , + U
17 16 12 12 11 10 9 8

1 I $ 2 [
34 22 22 20

M N 7 * A H M 1 9
17 15 14 13 10 10 9 9

E [ C
42 29 28

N N
100

Thus, the first character (D) was classified as a 3 with confidence 17,

as a W with confidence 16, and so on. The correct category was in
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fourth place for this character. For the fourth character (E), the

correct category was not ever. on the confidence list.

By taking the highest-confidence category as the classification

for each character, the following text is obtained:

31N[NSIQN IMACM[2]
20 ACCEPT 1l,I,J
31 FOK*AX [215]

IF[I 179, Z9N40
40 IC[I-IMA[!':L]50/50,60

50 IMACH[I]=J
6Q GQ TD 2B
99 RITKRN

This text contains 21 errors, giving an error rate of 21/107, or 20

percent on a character-by-character basis. (This relatively high error

rate for intra-author test reflects the differences between the alphabet

text that was used for training and the coding-sheet text being tested.)

The confidence lists for the characters were then given as input

to the syntax-analysis program, one FORTRAN statement at a time. The

syntax-analysis program has been described in this report and in the

two preceding Quarterly Reports. Making use of the alternative classi-

fications presented for each character, the syntax analyzer attempts

to match the text with a FORTRAN statement type and to resolve classifi-

cation errors which result in syntactically impossible text.

In this case, the syntax analyzer returned the following text:

DIMENSION IMACM[21

20 ACCEPT 31,I,J
31 FORMAT[2151

IF[I ]79,99,40
40 IF[I-IMACHL]50,50,60
50 IMACH(I]=J

60 GO TO 20
99 RETURN

In the cleaned-up text, only two characters are in error. The variable

IMACH appears as IMACM in the first line, and the statement number 99

appears as 79 in the fourth line. The classification error rate, on a

per-character basis, has teen reduced by a factor of ten.
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! I
The two errors that remain in the text are, of course, syntactically

correct on a statement-by-statement basis, but they are susceptible to

analysis in the context of a complete program. The statement number 79

cannot be correct within the fragment shown, because therc is no state-

ment labeled 79. Semantic analysis would show that the correct value

is very probably 99. This analysis would take account of the occurrences

of 99 elsewhere in the fragment, as well as the fact that "9" was the

second choice for the misclassified character. Similarly, global and

semantic analysis would indicate that IMACM on line 1 and IMACH on

line 6 were probably occurrences of the same variable name (in fact a

global syntactic error would result otherwise), although it would not

be proper to choose one of the two forms as correct on the basis of the

fragment shown. Thus, we see examples of both a correctable error and

one that is only detectable and should be flagged for a human proof-

reader. We are currently developing programs for semantic and global

analysis of this type.

The experiment described here is the only one of its type that we

have performed to date. We plan to do more, in conjunction with the

forthcoming additional scanning and intra-author classification of

coding sheets. Despite its limited scope, this experiment provides a

good example of the type of recognition-rate improvement that we are

attempting to achieve with syntactic and semantic analysis.
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V STATUS OF THE SYNTAX ANALYSIS PROGRAM

A. Introduction

The most important single problem facing the syntax analysis effort

is the resolution of algebraic expressions. The problem occupies a

central position in the work for at least two reasons. First, algebraic

expressions form portions of many of the most important FORTRAN state-

ment types, e.g., the arithmetic assignment statement, IF statement,

computed GO TO statement, and many input-output statements. Secondly,

although the rules for forming algebraic expressions are simple (just

the ordinary rules of algebra), the expressions themselves can be of

arbitrary complexity. Thus, the development of a program which could

successfully handle expressions is not only essential from a practical

point of view, but would represent a significant increase in the so-

phistication of our techniques.

During the past quarter, we have developed a number of approaches

to the problem of resolving expressions. In the remainder o. this

chapter we first point out the inadequacy of a straightforward approach,

and then detail the alternatives which are under investigation.

B. Dynamic Programming Approach

The most obvious way to resolve an algebraic 'xpression would be

to use dynamic programming in conjunction with the predicate function

EXPP. Conceptually, this would insure finding the string of symbols

with the highest total confidence of any string that was a legal FORTRAN

expression. A little calculation, however, indicates that this method

soon faces the prospect of a "combinatorial explosion." Suppose, for

example, that a string is 10 characters long, and suppose that the

classifier has provided 4 alternatives for each character. Even for

this relatively modest example the dynamic programming routine would

have to be prepared to generate over one million alternate strings of

For background, see the two preceding Quarterly Reports.
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symbols. Since it requires approximately one computer word merely to

specify a single string, it would take a million words of memory just

to list the alternatives. Even assuming the availability of such a

memory, the computation time would run to at least several hours.

Evidently, then, while the straightforward dynamic programming approach

is both the conceptually simplest - 3chnique and the decision-theoretic

optimum one, it cannot be applied directly to the problem of resolving

algebraic expressions.

In view of these considerations, the following four alternative

techniques have been proposed:

(1) Compression of Characters

(2) Heuristic Partitions

(3) Improvements in Dynamic Programming

(4) Table of Vsriables.

It is likely that the final method used will incorporate several of

these techniques.

C. Compression of Characters

Two independent observations may be made that suggest a way to re-

duce the combinatorial explosion. First, if the string is n characters

long and if there are h choices for each character, then there 
are hn

possible strings. Thus, complexity is very sensitive to the number of

alternatives provided by the classifier for each character. The second

observation concerns the FORTRAN syntax. In an isolated algebraic ex-

pression, every letter is syntactically equivalent to every other

letter, and every digit is syntactically equivalent to every other

digit. We may take advantage of this fact by compressing all alternate

letters for a single character into a single letter, and do the same

for all digits. A simple example will make the method clear. For

clarity, we defer for the moment the question of how to combine the

confidences associated with the compressed alternatives.
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Suppose the original P-list (list of all alternatives for all

characters, together with the confidence of each) is:

(((1 50) (J 30) (LB 10))

((PL 60) (4 20) (H 10) (K 10))

((DS 50) (S 30) (B 10) (R 10)))

This P-list might have come from the original expression "I + S."

Ignoring the confidences, we can form the A-list as:

((I J LB)

(PL 4 H K)

(DS S B R))

We now compress this list by grouping all occurrences of letters in

each sublist into a single letter, say "X," and all occurrences of

digits into a single digit, say "1." We leave the special characters

(PL,MI,DS, etc., meaning +, -, $, etc.) unchanged, since they each have

their own syntactic meaning. The compressed list would then be:

((X LB)

(PL 1 X)

(DS X))

Whereas the original list provided 48 possible distinct strings, the

compressed list provides only 12. This compressed list (with the con-

fidences inserted) would be the input to the dynamic programming routine.

The output of the routine would be the expression "X + X." At this

point the expression would have to be reconstructed, by inserting for

each "X" and each "I" an appropriate choice. The simplest way to do

this is to use the highest confidence letter or number that the classi-

fier originally provided for each particular character. Reconstructing

characters in this fashion Is in fact theoretically optimum, if no

semantics are employed, i.e., if the global structure of the entire

FORTRAN program Is not used. In our example, -X + X" would become

"1 + S .
"

Returning to the question of combining confidences dvring coa-

pression, we note that the solution hinges upon how we use confidences
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to represent probabilities. In the Appendix, we show that a reasonable

combination of confidences, uncer the assumption of logarithmic scaling,

is to set the confidence of the compressed character equal to th, maximum

confidence of any of its constituents. In our example, the final result

of compressing would be the list:

(((X 50) (LB 10))

((PL 60) (1 20) (X 10))

((DS 50) (X 30)))

LISP programs for compressing a P-list and reconstructing a legal

expression from the output of the dynamic programming routine have been

written and debugged. Our experience with them to date indicates that,

while the saving in time and storage is considerable, the method is not

sufficiently powerful by itself to solve the problem of combinatorial

complexity of algebraic expressions.

D. Heuristic Partitioning

Another approach to containing the combinatorial explosion depends

upon the fact that an algebraic expression is composed of a sequence of

elements connected by one of the five arithmetic infix operations. We

can partition an expressior into a sequence of elements by using any

or all of the five or'rators (+, -, *, /, **) as delimiters. Since

the elements between operators are often themselves expressions, the

essence of this approach is to try to break up one long expression

into a sequence of shorter ones, resolve each of the shorter ones, and

then string them together to form the original expression. In practice,

such an approach might be implemented in the following manner.

(F r simplicity, we assume that only the operator -'+" will be used

as a delimiter.) Given a P-list, we do the following:

(1) Mark all L-lists containing "+" among the alterna-

tives. (An L-list is a list of the alternatives

and confidences that the classifier provides for

a single original character, i.e., a top-level

element of a P-list.)
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(2) Select some subset of the marked L-lists as being

delimiters.

(3) The delimiters partition the original P-list into

segments. Try to extract an algebraic expression

from each segment.

(4) If successful, string the expressions found in

Step 3 together with "+" and stop. If not, select

some other subset of the marked L-lists as being

delimiters, and proceed o Step 3.

In the example of the preceding section, there is only one possible "4+."

The original P-list would then be broken up into the two segments

((I 50) (J 30) (LB 10)) and ((DS 50) (S 30) (B 10) (R 10)). Each seg-

ment would be resolved into the simple expressions "I" and "S"

respectively, and the final expression "I + S" would be formed.

We have written and debugged two LISP programs that implement the

above algorithm. The first version chooses the delimiters (in Step 2

of the algorithm) according to the rule "have as maity delimiters as

possible." This tends to break the original P-list into many small

pieces, so that the computational cost or resolving each piece is rela-

tively loA. The second version uses dynamic programming to select de-

limiters (also in Step 2), and is more sophisticated in its methods

for avoiding repetitious computation. The first version has the ad-

vantage of being computationally feasible, but its inattention to the

confidences of the operators used as delimiters weans that it often

returns legal expressions of low total confidence, The second method

avoids this pitfall, but Is more )ikely to encounter situations where

the length of a segment is still tof long to be handled by available

techniques. Both versions suffer from the fact that it is perfectly

possible to find a legal expression with "+' signs in which the seg-

monts delimited are not legal expressions. For example, if VAR is an

array variable, then VAR(I -i S) is a legaL expression, but both

"VAR(I" and "S)'" are not legal.
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E. Improvements in Dynamic Programming

We may recall (see the Fourth Quarterly Report, p. 40) that the

first part of the dynamic programming routine builds a graph of possible

strings of characters. Once the graph is built, then the second part

of the routine peels off one alternative string at a time, in order of

decreasing confidence, and hands the string over to another program to

check legality. (In this case, the other program would be the function

EXPP, which checks for legal expressions.) It is quite clear that we

would never want to peel off strings near the bottom of the graph,

since the overall confidence of such a string would be low. Therefore,

the bottom portion of the graph can be neglected. The first implementa-

tion of the dynamic programming routine nevertheless built the entire

graph. To remedy this, two implementations of the building portion of

the dynamic programming routine have recently been completed that are

sophisticated enough to avoid biilding the lower portion of the graph.

Although there is no doubt that these improved versions will vastly

reduce the memory and time requirements of dynamic programming, we have

not yet gained enough experience with them to specify quantitatively

the maximum complexity they can handle.

F. Table of Variables

The final method under consideration is the only one of the four

to exploit the semantics of a particular program directly, in addition

to using the general constraints of the syntax of FORTRAN. We observe

first that names of variables can be up to eight characters in length,

and thus, typically constitute the bulk of an expression. Second, we

observe that many variables appear more than one time in a typical

program, often appearing first in the COMMON or DIMENSION statements.

If the variables in a program could be identified initially, then one

might scan through expressions and isolate at least some of the variable

names, replace the corresponding segments of the P-list with simple

symbols, and thus reduce the computational burden.

At present, this approach is the least explored of the four tech-

niques presented, and an evaluation of its utility cannot be made until
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it is more fully developed. We expect to explore this approaOc, as a
natural corollary to the general semantic analysis of program texts.
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APPENDIX

In this Appendix we show that, with logarithmic scaling, the con-

fidence of a compressed character is approximately equal to the maximum

of the confidence of its constituents. Suppose the characters al, ..., i

an are compressed into a single character a. Let ci be the confidence

and p1 be the probability of a,, and let c and p be the confidence and

probability of a. Then

c =ln pl

P= eC

c=lnp ,

c
p=e

by the definition of our confidences. We can then write

p Pr~a) = Pr(a u a2 U ... a
1 2n

n n n
c= Pr {ail Pl e

1=1 i=1 idl

since the events a1 are mutually disjoint. But c = ln p, so

n

ci

rf we define cmax max ci, we have
i
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rn [ e c m x 5 n e c m x
or

c !5.C C + in(n)
max max

Thus a conservative approximation is to set c =c
max
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